
A Methodology for the Measurement
of Test Effectiveness

John C. Munson Allen P. Nikora
Computer Science Department Jet Propulsion Laboratory

University of Idaho California Institute of Technology
MOSCOW, ID 83844-1010 Pasadena, CA 9 1 109-8099
jmunson @ics.uidaho.edu Allen.P.Nikora@jjpl.nasa.gov

Abstract

In developing a software system, we would like to estimate the
total number of faults inserted into that system, its residual fault content
at any given time, and the efficacy of the testing activity in executing
the code containing the newly inserted faults. Prior to test, however,
there may be very little direct information regarding the number and
location of faults. This lack of direct information requires the devel-
opment of a fault surrogate from which the number of faults and their
location can be estimated. We develop a fault surrogate based on
changes in relative complexity, a synthetic measure which has been
successfully used as a fault surrogate in previous work. We show that
changes in the relative complexity can be used to estimate the rates at
which faults are inserted into a system between successive revisions.
These rates can be used to continuously monitor the total number of
faults inserted into a system. Finally, we develop a method for deter-
mining test effectiveness based on measuring the proportion of testing
activity devoted to exercising those areas of the system that have
changed since the last version.

1 Introduction

Over a number of years of study, we can now establish a dis-
tinct relationship between software faults and certain aspects of soft-
ware complexity. When a software system consisting of many distinct
software modules is built for the first time, we have little or no direct
information as to the location of faults in the code. Some of the mod-

mailto:ics.uidaho.edu
mailto:Allen.P.Nikora@jjpl.nasa.gov

ules will have far more faults in them than others. We now, however,
know that the number of faults in a module is highly correlated with
certain software attributes that can be measured. This means that we
can measure the software on these specific attributes and have some
reasonable notion as to the degree to which the modules are fault prone
[9,131.

In the absence of information as to the specific location of
software faults, we have successfully used a derived metric, the relative
complexity measure, as a fault surrogate. That is, if the relative com-
plexity value of a module is large, then it will likely have a large num-
ber of latent faults. If, on the other hand, the relative complexity of a
module is small, then it will tend to have fewer faults. As the software
system evolves through a number of sequential builds, faults will be
identified and the code will be changed in an attempt to eliminate the
identified faults. The introduction of new code however, is a fault
prone process just as the initial code generation was. Faults may well
be injected during this evolutionary process.

Code does not always change just to fix faults that have been
isolated in it. Some changes to code during its evolution represent en-
hancements, design modifications, or changes in the code in response
to continually evolving requirements. These incremental code en-
hancements may also result in the insertion of still more faults. Thus,
as a system progresses through a series of builds, the relative complex-
ity fault surrogate of each program module that has been altered must
also change. We will see that the rate of change in relative complexity
will serve as a good index of the rate of fault insertion.

Once the rate of fault insertion has been established, it becomes
possible to estimate the number of faults remaining in the system at any
point during the development. Since we use changes in relative com-
plexity as an index of the fault insertion rate, it becomes possible to
estimate the number of residual faults at the module level, in which a
module is taken to be a procedure, function, or method. This informa-
tion is useful to software development managers wishing to estimate
the resources required to remove the remaining faults - not only can the
number of remaining faults be estimated, but it is possible to direct
fault detection and removal resources at those portions of the software
estimated to have the highest concentrations of residual faults. How-
ever, this is only half of the picture. Once the software is operating in

the field, we wish to estimate its reliability. The estimated number of
residual faults, a static measure, must be transformed into an estimate
of the system’s dynamic behavior.

The general notion of software test is that rate of fault removal
will generally exceed the rate of fault insertion. In most cases, this is
probably true [151. Some changes are rather more heroic than others.
During these more substantive change cycles, it is quite possible that
the actual number of faults in the system will rise. We would be very
mistaken, then, to assume that software test will monotonically reduce
the number of faults in a system. This will only be the case when the
rate of fault removal exceeds the rate of fault insertion. The rate of
fault removal is relatively easy to measure. The rate of fault insertion
is much more tenuous. This fault insertion process is directly related to
two measures that we can take on code as it evolves, code change and
code churn.

In this investigation we will establish a methodology whereby
code can be measured from one build to the next, a measurement base-
line. We will use this measurement baseline to develop an assessment
of the rate of change to a system as measured by our relative complex-
ity fault surrogate. From this change process we will then be able to
derive a direct measure of the rate of fault insertion based on changes in
the software from one build to the next. We examine data from an ac-
tual system on which faults may be traced to specific build increments
to assess the predicted rate of fault insertion with the actual. Finally,
we will develop a method of measuring the efficiency of a test activity.

To estimate rates of fault insertion, it is necessary to identify a
complete software system on which every version of every module has
been archwed together with the faults that have been recorded against
the system as it evolved. Of the two systems we analyzed for this
study, the Cassini Orbiter Command and Data Subsystem at JPL met
all of our objectives. On the first build of this system there were ap-
proximately 96K source lines of code in approximately 750 program
modules. On the last build there were approximately 1 10K lines of
source code in approximately 800 program modules. As the system
progressed from the first to the last build there were a total of 45,200
different versions of these modules. On the average, then, each module
progressed through an average of 56 evolutionary steps or versions.
For the purposes of this study, the Ada program module is a procedure

or function. It is the smallest unit of the Ada language structure that
may be measured. A number of modules present in the first build of
the system were removed on subsequent builds. Similarly, a number of
modules were added.

The Cassini CDS does not represent an extraordinary software
system. It is quite typical of the amount of change activity that will
occur in the development of a system on the order of 100 KLOC. It is a
non-trivial measurement problem to track the system as it evolves.
Again, there are two different sets of measurement activities that must
occur at once. We are interested in the changes in the source code and
we are interested in the fault reports that are being filed against each
module.

To determine the efficiency of a test activity, it is necessary to
have a system in which structural changes between one increment and
its predecessor can be measured together with the execution profile ob-
served during test. Since we were unable to accomplish this for the
CASSINI CDS flight software, we studied the real-time software for a
commercial embedded system.

2 A Measurement Baseline

The measurement of an evolving software system through the
shifting sands of time is not an easy task. Perhaps one of the most dif-
ficult issues relates to the establishment of a baseline against which the
evolving systems may be compared. This problem is very similar to
that encountered by the surveying profession. If we were to buy a
piece of property, there are certain physical attributes that we would
like to know about. Among these properties is the topology of the site.
To establish the topological characteristics of the land, we will have to
seek out a benchmark. This benchmark represents an arbitrary point
somewhere on the subject property. The distance and the elevation of
every other point on the property may then be established in relation to
the measurement baseline. Interestingly enough, we can pick any point
on the property, establish a new baseline, and get exactly the same to-
pology for the property. The property does not change. Only our per-
spective changes.

When measuring software evolution, we need to establish a
measurement baseline for the same purpose described above [17,141.

We need a fixed point against which all others can be compared. Our
measurement baseline also needs to maintain the property so that, when
another point is chosen, the exact same picture of software evolution
emerges; only the perspective changes. The individual points involved
in measuring software evolution are individual builds of the system.

Standardizing metrics for one particular build is simple. For
each metric obtained for each module, subtract from that metric its
mean and divide by its standard deviation. This puts all of the metrics
on the same relative scale, with a mean of zero and a standard deviation
of one. This works fine for comparing modules within one particular
build. But when we standardize subsequent builds using the means and
standard deviations for those builds a problem arises. The standardiza-
tion masks the change that has occurred between builds. In order to
place all the metrics on the same relative scale and to keep from losing
the effect of changes between builds, all build data is standardized us-
ing the means and standard deviations for the metrics obtained from the
baseline system. This preserves trends in the data and lets measure-
ments from different builds be compared.

For each raw metric in the baseline build, we may compute a
mean and a standard deviation. Let us denote the vector of mean val-
ues for the baseline build as Z6 and the vector of standard deviations
as s6 . The standardized baseline metric values for any module j in an
arbitrary build i, then, may be derived from raw metric values as

W ~ , ~ - 2 8,)
Z R . i - I -

I B d

The process of standardizing the raw metrics certainly makes
them more tractable. Among other things, it now permits the compari-
son of metric values from one build to the next. This standardization
does not solve the main problem. There are too many metrics collected
on each module over many builds. We need to reduce the dimension-
ality of the problem. We have successfully used principal components
analysis for reducing the dimensionality of the problem [10,7]. The
principal components technique will reduce a set of highly correlated
metrics to a much smaller set of uncorrelated or orthogonal measures.
One of the products of the principal components technique is an or-
thogonal transformation matrix T that will send the standardized scores
(the matrix z) onto a reduced set of domain scores thusly, d = zT .

In the same manner as the baseline means and standard devia-
tions were used to transform the raw metric of any build relative to a
baseline build, the transformation matrix T B derived from the baseline
build will be used in subsequent builds to transform standardized met-
ric values obtained from that build to the reduced set of domain metrics
as follows: dB,‘ = zB.’ T B , where zB.j are the standardized metric Val-
ues from build i baselined on build B .

Another artifact of the principal components analysis is the set
of eigenvalues that are generated for each of the new principal compo-
nents. Associated with each of the new measurement domains is an
eigenvalue, h . These eigenvalues are large or small varying directly
with the proportion of variance explained by each principal component.
We have successfully exploited these eigenvalues to create a new met-
ric called relative complexity, p , that is the weighted sum of the do-
main metrics to wit:

m
pi = 50 + 1 0 C k j d j ,

j=l

where m is the dimensionality of the reduced metric set [101.
As was the case for the standardized metrics and the domain

metrics, relative complexity may be baselined as well using the eigen-
values and the baselined domain values as follows:

m

p,! =Chyd,B
j= l

If the raw metrics that are used to construct the relative com-
plexity metric are carefully chosen for their relationship to software
faults, then the relative complexity metric will vary in exactly the same
manner as the faults [121. The relative complexity metric in this con-
text is a fault surrogate. Whereas we cannot measure the faults in a
program directly we can measure the relative complexity of the pro-
gram modules that contain the faults. Those modules having a large
relative complexity value will ultimately be found to be those with the
largest number of faults [1 11.

3 Software Evolution

As a software system grows and modifications are made, the
modules that comprise the system are recompiled and a new version, or
build, is created. Each build is constructed from a distinct set of these
software modules, though not always exactly the same ones. The new
version may contain some of the same modules as the previous version.
Some entirely new modules may even omit some modules that were
present in an earlier version. Of the modules that are common to both
the old and new version, some may have undergone modification since
the last build. The set of modules that constitute the system on any one
build is subject to material change over the life of the system.

3.1 Module Sets and Versions

When evaluating the change that occurs to the system between
any two builds i, andj, we are interested in three sets of modules. The
first set, M:,' , is the set of modules present in both builds of the sys-
tem. These modules may have changed since the earlier version but
were not removed. The second set, M y , is the set of modules that
were in the early build and were removed prior to the later build. The
final set, M Y , is the set of modules that have been added to the system
since the earlier build.

As an example, let build i consist of the following set of mod-
ules.

. .

M' = (m,,m,,m3,m4,m,)
Between build i andj module m3 is removed giving

M j =" u ~ : J -M;J

= i

= I - m1,"4,ms,m,,m8 i

. .

m l , m 2 9 m 3 9 m 4 m 5 > u (} - { m 3)
= ml,m2rm4,m53

Then between builds j and k two new modules, m7 and m, are added

and module m2 is deleted giving
~k = M j uMi.k -Mi.k

- m,,m, ,m, ,m,)u m,?m*)-{mJ

With a suitable baseline in place, and the module sets defined
above, it is now possible to measure software evolution across a fbll
spectrum of software metria. We can do this first by comparing aver-

age metric values for the different builds. Secondly, we can measure
the increase or decrease in system complexity as measured by the code
delta, or we can measure the total amount of change the system has un-
dergone between builds, code churn.

We can now see that establishing the complexity of a system
across builds in the face of changing modules and changing sets of
modules is in itself a very complex problem. In terms of the example
above, the relative complexity of the system RB5' at build i, the early
build, is given by

where p,"" is the relative complexity of module m, on this build base-
lined by build B.
Similarly, the relative complexity of the system R B ~ j at buildj, the latter
build is given by

m,EM'

The later system build is said to be more complex if R". ' > R R , ' . Re-
gardless of which metric is chosen, the goal is the same. We wish to
assess how the system has changed over time with respect to that par-
ticular measurement. The concept of a code delta provides this infor-
mation. A code delta is, as the name implies, the difference between
two builds as to the relative complexity metric.

3.2 Code Churn and Code Deltas

The change in the relative complexity in a single module be-
tween two builds may be measured in one of two distinct ways. First,
we may simply compute the difference in the module relative com-
plexity between build i and build j . We will call this value the code
delta for the module m, , or 6 : j = p,B" - pf,' . The absolute value of
the code delta is a measure of code churn. In the case of code churn,
what is important is the absolute measure of the nature that code has
been modified. From the standpoint of fault insertion, removing a lot
of code is probably as catastrophic as adding a bunch. The new meas-

ure of code chum, x , for module m, is simply
x ; ~ . . =16;/l=lp;.j . . -

P,".'I .
It is now possible to compute the total change activity for the

aggregate system across all of the program modules. The total net
change of the system is the sum of the code delta's for a system be-
tween two builds i andj is given by

With a suitable baseline in place, and the module sets defined
above, it is now possible to measure software evolution across a full
spectrum of software metrics. We can do this first by comparing aver-
age metric values for the different builds. Secondly, we can measure
the increase or decrease in system complexity as measured by a se-
lected metric, code delta, or we can measure the total amount of change
the system has undergone between builds, code churn.

A limitation of measuring code deltas is that it doesn't give an
indicator as to how much change the system has undergone. If, be-
tween builds, several software modules are removed and are replaced
by modules of roughly equivalent complexity, the code delta for the
system will be close to zero. The overall complexity of the system,
based on the metric used to compute deltas, will not have changed
much. However, the reliability of the system could have been severely
affected by the process of replacing old modules with new ones. What
we need is a measure to accompany code delta that indicates how much
change has occurred. Code churn is a measurement, calculated in a
similar manner to code delta, that provides this information. The net
code chum of the same system over the same builds is

When several modules are replaced between builds by modules
of roughly the same complexity, code delta will be approximately zero
but code chum will be equal to the sum of the value of p for all of the
modules, both inserted and deleted. Both the code delta and code chum
for a particular metric are needed to assess the evolution of a system.

4 Obtaining Average Build Values

One synthetic software measure, relative complexity, has
clearly been established as a successful surrogate measure of software
faults [101. It seems only reasonable that we should use it as the meas-
ure against which we compare different builds. Since relative corn-
plexity is a composite measure based on the raw measurements, it in-
corporates the information represented by LOC, Y o , q l , q 2 , and all
the other raw metrics of interest. Relative complexity is a single value
that is representative of the complexity of the system which incorpo-
rates all of the complexity attributes we have measured (e.g., size,
control flow, style, data structures, etc.).

By definition, the average relative complexity, p , of the base-
line system will be

where N B is the cardinality of the set of modules on build B, the base-
line build. Relative complexity for the baseline build is calculated from
standardized values using the mean and standard deviation from the
baseline metrics. The relative complexities are then scaled to have a
mean of 50 and a standard deviation of 10. For that reason, the average
relative complexity for the baseline system will always be a fixed point.
Subsequent builds are standardized using the means and standard de-
viations of the metrics gathered from the baseline system to allow corn-
parisons. The average relative complexity for subsequent builds is
given by

where N k is the cardinality of the set of program modules in the kfh
build and p:,‘ is the baselined relative complexity for the i fh module
of that set.

The total relative complexity, Ro , of a system on its initial
build is simply the sum of all relative complexities of each module of
the initial system,

N

R ’ = Z p , 0 .
i=l

The principle behind relative complexity is that it serves as a
fault surrogate. That is, it will vary in precisely the same manner as do
software faults. The fault potential r: of a particular module i is di-
rectly proportional to its value of the relative complexity fault surro-
gate. Thus,

To derive a preliminary estimate for the actual number of faults
per module we may make judicious use of historical data. From previ-
ous software development projects it is possible to develop a propor-
tionality constant, say k, that will allow the total system relative com-
plexity to map to a specific system fault count as follows: Fa = kRo or
Ro = k f F 0 . Substituting for R in the previous equation, we find that

Thus, our best estimate for the number of faults in module i in the ini-
tial configuration of the system is

g P = r i F .
After an interval of testing a number of faults will be found and

fixes made to the code to remedy the faults. Let F j be the total num-
ber of faults found in the total system up to and including the j f h build
of the software. In a particular module i there will be f , ' faults found
in the first build that are attributable to this module. The estimated
number of faults remaining in module i will then be

0 0

gt = go - f '
1 1 1 ,

assuming that we have only fixed faults in the code and not added any
new ones.

Our ability to locate the remaining faults in a system will relate
directly to our exposure to these faults. If, for example, at the j f h build
of a system there are g,! remaining faults in module i , we can not ex-
pect to identify any of these faults unless some test activity is allocated
to exercising module i.

As the code is modified over time, faults will be found and
fixed. However, new faults will be introduced into the code as a result
of the change. In fact, this fault insertion process is directly propor-

tional to change in the program modules from one version to the next.
As a module is changed from one build to the next in response to
evolving requirements changes and fault reports, its complexity will
also change. Generally, the net effect of a change is that complexity
will increase. Only rarely will its complexity decrease. It is now nec-
essary to describe the measurement process for the rate of change in an
evolving system.

5 Software Evolution and the Fault Insertion Process

Initially, our best estimate for the number of faults in module i
in the initial configuration of the system is

gP=q F . 0 0

As the i'h module was tested during the test activity of the first build,
the number of faults found and fixed in this process was denoted by
f i ' . However, in the process of fixing this fault, the source code will
change. In all likelihood, so, too, will the relative complexity of this
module. Over a sequence of builds, the complexity of this module may
change substantially. Let,

i
AY =

k=l

represent the net change in relative complexity to the i fh module over
the first j builds. Then the cumulative churn in the total system over
thesej builds will be,

N , v0.i = cvp3i ,

where N , is the cardinality of the set of all modules that were in exis-

tence over these j builds. The complexity of the ith module will have
changed over this sequence of builds. Its new value will be pi +A:,'.
Some changes may increase the relative complexity of this module and
others may decrease it. A much better (as will be demonstrated) meas-
ure of the cumulative change to the system will be p i + VS-j. The sys-
tem complexity, R, will also have changed. Its new value will be

r = l

RO + A0.J

On the initial build of the system the initial burden of faults in a
module was proportional to the relative complexity of the module. As
the build cycle continues, the rate of fault insertion is most closely as-
sociated with the code churn. Thus, the proportion of faults in the i"
module will have changed over the sequence o f j builds, related to its
initial relative complexity and its subsequent code churn. Its new
value will be

We now observe that our estimate of the number of faults in
the system has now changed. On the j" build there will no longer be
F o faults in the system. New faults will have been introduced as the
code has evolved. In all likelihood, the initial software development
process and subsequent evolution processes will be materially different.
This means that there will be a different proportionality constant, say
k' , representing the rate of fault insertion for the evolving system. For
the total system, then, there will have been F' = kRo + k'Aoo.' faults in-
troduced into the system from the initial build through the j f h build.
Each module will have had h/ = q J F J faults introduced in it either from
the initial build or on subsequent builds. Thus, our revised estimate of
the number of faults remaining in module i on buildj will be

g / = h,! -A,'.
The rate of fault insertion is directly related to the change ac-

tivity that a module will receive from one build to the next. At the
system level, we can see that the expected number of injected faults
from buildj to buildj+l will be

FJ+' -FJ =kR' +k'V'.J'' -kRQ +kfV'.J
= kf(vo.J+l - VOJ)
- - kfVj.'+1

At the module level, the rate of fault insertion will again be propor-
tional to the level of change activity. Hence, the expected number of
injected faults between buildj to buildj+l on module i will be simply
A/+[- h; .

The two proportionality constants k and k' are the ultimate cri-
terion measures of the software development process and software
maintenance processes. Each process has an associated fault insertion

proportionality constant. If we institute a new software development
process and observe a significant change downward in the constant k,
then the change would have been a good one. Very frequently, how-
ever, software processes are changed because development fads change
and not because a criterion measure has indicated that a new process is
superior to a previous one. We will consider that an advance in soft-
ware development process has occurred if either k or k' has diminished
for that new process.

6 Definition of a Fault

Unfortunately there is no particular definition of just precisely
what a software fault is. In the face of this difficulty it is rather hard to
develop meaningful associative models between faults and metrics. In
calibrating our model, we would like to know how to count faults in an
accurate and repeatable manner. In measuring the evolution of the
system to talk about rates of fault introduction and removal, we meas-
ure in units to the way that the system changes over time. Changes to
the system are visible at the module level, and we attempt to measure at
that level of granularity. Since the measurements of system structure
are collected at the module level (by module we mean procedures and
functions), we would like information about faults at the same granu-
larity. We would also like to know if there are quantities that are re-
lated to fault counts that can be used to make our calibration task eas-
ier.

Following the second definition of fault in [3,4], we consider a
fault to be a structural imperfection in a software system that may
lead to the system's eventually failing. In other words, it is a physical
characteristic of the system of which the type and extent may be
measured using the same ideas used to measure the properties of more
traditional physical systems. Faults are introduced into a system by
people making errors in their tasks - these errors may be errors of
commission or errors of omission.

In order to count faults, we needed to develop a method of
identification that is repeatable, consistent, and identifies faults at the
same level of granularity as our structural measurements. In analyzing
the flight software for the CASSINI project the fault data and the
source code change data were available from two different systems.

The problem reporting information was obtained from the JPL institu-
tional problem reporting system. For the software used in this study,
failures were recorded in this system starting at subsystem-level inte-
gration, and continuing through spacecraft integration and test. Failure
reports typically contain descriptions of the failure at varying levels of
detail, as well as descriptions of what was done to correct the fault(s)
that caused the failure. Detailed information regarding the underlying
faults (e.g., where were the code changes made in each affected mod-
ule) is generally unavailable from the problem reporting system.

The entire source code evolution could be obtained directly
from the Software Configuration Control System (SCCS) files for all
versions of the flight software. The way in which SCCS was used in
this development effort makes it possible to track changes to the system
at a module level in that each SCCS file stores the baseline version of
that file (which may contain one or more modules) as well as the
changes required to produce each subsequent increment (SCCS delta)
of that file. When a module was created, or changed in response to a
failure report or engineering change request, the file in which the mod-
ule is contained was checked into SCCS as a new delta. This allowed
us to track changes to the system at the module level as it evolved over
time. For approximately 10% of the failure reports, we were able to
identify the source file increment in which the fault(s) associated with a
particular failure report were repaired. This information was available
either in the comments inserted by the developer into the SCCS file as
part of the check-in process, or as part of the set of comments at the
beginning of a module that track its development history.

Using the information described above, we performed the fol-
lowing steps to identify faults:

For each problem report, search all of the SCCS files to iden-
tify all modules and the increment(s) of each module for which
the software was changed in response to the problem report.
For each increment of each module identified in Step 1 , start
with the assumption that all differences between the increment
in which repairs are implemented and the previous increment
are due solely to fault repair. Note that this is not necessarily a
valid assumption - developers may be making functional en-
hancements to the system in the same increment that fault re-
pairs are being made. Careful analysis of failure reports for

which there was sufficiently detailed descriptive information
served to separate areas of fault repair from other changes.
However, the level of detail required to perform this analysis
was not consistently available.

0 Use a differential comparator (e.g.: Unix dif f) to obtain the
differences between the increment(s) in which the fault(s) were
repaired, and the immediately preceding increment(s). The re-
sults indicated the areas to be searched for faults.
After completing the last step, we still had to identify and count

the faults - the results of the differential comparison cannot simply be
counted up to give a total number of faults. In order to do this, we de-
veloped a taxonomy for identifying and counting faults [Niko98]. This
taxonomy differs from others in that it does not seek to identify the root
cause of the fault. Rather, it is based on the types of changes made to
the software to repair the faults associated with failure reports - in other
words, it constitutes an operational definition of a fault. Although
identifying the root causes of faults is important in improving the de-
velopment process [l , 51, it is first necessary to identify the faults. We
do not claim that this is the only way to identify and count faults, nor
do we claim that this taxonomy is complete. However, we found that
this taxonomy allowed us to successfully identify faults in the software
used in the study in a consistent manner at the appropriate level of
granularity.

7 The Relationship Between Faults And Code Changes

Having established a theoretical relationship between software
faults and code changes, it is now of interest to validate this model em-
pirically. This measurement occurred on two simultaneous fronts.
First, all of the versions of all of the source code modules were meas-
ured. From these measurements, code churn and code deltas were ob-
tained for every version of every module. The failure reports were
sampled to lead to specific faults in the code. These faults were classi-
fied according to the above taxonomy manually on a case by case basis.
Then we were able to build a regression model relating the code meas-
ures to the code faults.

The Ada source code modules for all versions of each of these
modules were systematically reconstructed from the SCCS code deltas.

Each of these module versions was then measured by the UX-Metric
analysis tool for Ada [191. Not all metrics provided by this tool were
used in this study. Only a subset of these actually provide distinct
sources of variation [6]. The specific metrics used in this study are
shown in Table 1.

Table 1. SoRware Metric Definitions

Metrics Definition

r l l

r l 2

Count of unique operators [2]

Count of unique operands
Count of total operators

Count of total operands
N ,

N2
p’R

McCabe’s cyclomatic complexity V(g)

Purity ratio: ratio of Halstead’s f i to total program vocabulary

Depth
Average nesting level of program blocks AveDepth

Maximum nesting level of program blocks

Count of executable statements Stm ts

Total words used in all comments CmtWds

Count of comments Cmt

Number of blank lines Blk

Number of lines of code LOC

LSS

Number of physical source statements PSS

Number of logical source statements

NonEx

Average number of lines of code between references to each AveSpan

Number of non-executable statements

variable
VI Average variable name length

To establish a baseline system, all of the metric data for the
module versions that were members of the first build of CDS were then

analyzed by our PCA-RCM tool. This tool is designed to compute
relative complexity values either from a baseline system or from a sys-
tem being compared to the baseline system. In that the first build of
the Cassini CDS system was selected to be the baseline system, the
PCA-RCM tool performed a principal components analysis on these
data with an orthogonal varimax rotation. The objective of this phase
of the analysis is to use the principal components technique to reduce
the dimensionality of the metric set.

Table 2. Principal Components of Software Metrics

Metric Nesting Style Structure Sue

%Variance 6.009 10.454 30.315 37.956

As may been seen in Table 2, there are four principal compo-
nents for the 18 metrics shown in Table 1. For convenience, we have
chosen to name these principal components as Size, Structure, Style
and Nesting. From the last row in Table 2 we can see that the new re-
duced set of orthogonal components of the original 18 metrics account
for approximately 85% of the variation in the original metric set.

As is typical in the principal components analysis of metric
data, the Size domain dominates the analysis. It alone accounts for ap-
proximately 38% of the total variation in the original metric set. Not
surprisingly, this domain contains the metrics of total statement count
(Stmts), logical source statements (LSS), the Halstead lexical metric
primitives of operator and operand count, but it also contains cyclo-
matic complexity (V(g)). In that we regularly find cyclomatic com-
plexity in this domain we are forced to conclude that it is only a simple
measure of size in the same manner as statement count. The Struc-
ture domain contain those metrics relating to the physical structure of
the program such as non-executable statements (NonEx) and the pro-
gram block count (Blk). The Style domain contains measures of at-
tribute that are directly under a programmer’s control such as variable
length (VZ) and purity ratio (P/R). The Nesting domain consist of the
single metric that is a measure of the average depth of nesting of pro-
gram modules (AveDepth).

In order to transform the raw metrics for each module version
into their corresponding relative complexity values, the means and the
standard deviations must be computed. These are shown in Table 3.
These values will be used to transform all raw metric values for all ver-
sions of all modules to their baselined z score values. The last four col-
umns of Table 3 contain the actual transformation matrix that will map
the metric z score values onto their orthogonal equivalents to obtain the
orthogonal domain metric values used in the computation of relative
complexity. Finally, the eigenvalues for the four domains are presented
in the last row of this table.

Table 3, then contains all of the essential information needed to
obtain baselined relative complexity values for any version of any

module relative to the baseline build. As an aside, it is not necessary
that the baseline build be the initial build. As a typical system pro-
gresses through hundreds of builds in the course of its life, it is well
worth reestablishing a baseline closer to the current system. In any
event, these baseline data are saved by the PCA-RCM tool for use in
later computation of metric values. Whenever the tool is invoked ref-
erencing the baseline data it will automatically use these data to trans-
form the raw metric values given to it.

Table 3. Baseline Transformation Data

VI 5.7 8.2 0.12 0.02 -0.11 0.06

Metric Domain Domain Domain Domain 6~
1 4 3 2

AveDept

values
1.082 1.882 5.457 6.832 Eigen-

h
-0.1 1 0.40 -0.06 0.07 4.4

In relating the number of faults inserted in an increment to
measures of a module’s structural change, we had only a small number
of observations with which to work. Problem reports could not be con-
sistently traced back to source code, and there were numerous modules
for wbch UX-Metric did not report measurements. The net result was
that of the over 100 faults that were initially identified, there were only
35 observations in which a fault could be associated with a particular
increment of a module, and with that increment’s measures of code
delta and code churn.

For each of the 35 modules for which there was viable fault
data, there were three data points. First, we had the number of injected
faults for that module that were the direct result of changes that had
occurred on that module between the current version that contained the
faults and the previous version that did not. Second, we had code delta
values for each of these modules from the current to the previous ver-
sion. Finally, we had code churn values derived from the code deltas.

Linear regression models were computed for code churn and
code deltas with code faults as the dependent variable in both cases.
Both models were built without constant terms in that we surmise that
if no changes were made to a module, then no new faults could be in-
troduced. The results of the regression between faults and code deltas
were not at all surprising. The squared multiple R for this model was
0.001, about as close to zero as you can get. This result is directly at-
tributable to the non-linearity of the data. Change comes in two fla-
vors. Change may increase the complexity of a module. Change may
decrease the complexity of a model. Faults, on the other hand, are not
related to the direction of the change but to its intensity. Removing
masses of code from a module is just as likely to introduce faults and
adding code to it.

Table 4. Regression Analysis of Variance

Source I Sum-of- I DF I Mean-Square I F-Ratio I P
Squares

Regression 0.00 62.996 33 1.879 1 33 1.879
Residual 5.268 10.673 34 179.121

Table 5. Regression Model

Effect I Coefficient I Std Error I t I P(2-Tail)
Chum I 0.576 I 0.073 I 7.937 I 0.000

Table 6. Regression Statistics

N I Multiple R I Squared multiple R I Standard error of estimate
35 I 0.806 0.649 2.296

The regression model between code churn and faults is dra-
matically different. The regression ANOVA for this model are shown
in Table 4. Whereas code deltas do not show a linear relationship with
faults, code churn certainly does. The actual regression model is given
in Table 5 . In Table 6 the regressions statistics have been reported. Of
particular interest is the Squared Multiple R term. This has a value of
0.649. This means, roughly, that the regression model will account for
more that 65% of the variation in the faults of the observed modules
based on the values of code churn.

Of course, it may be the case that both the amount of change
and the direction in which the change occurred affect the number of
faults inserted into the system. The linear regression through the origin
shown in Tables 7 , 8, and 9 below illustrates this particular regression
model. Tables 5 and 8 contain our estimates for the constant k relating
the rate of fault insertion to the measured structural change, measured
by code churn and code delta. We see that the model incorporating
code delta, as well as code churn, performs significantly better than the
model incorporating code churn alone, as measured by Squared Multi-
ple R and Mean Sum of Squares.

Table 7. Regression Analysis of Variance

Source

4.356 33 143.753 Residual
0.00 42.153 183.623 2 367.247 Regression

P F-Ratio Mean-Square DF Sum-of-Squares

Table 8. Regression Model

Effect Coefficient

0.00 2.849 0.071 0.201 Delta
0.00 9.172 0.071 0.647 Chum

P(2-Tail) t Std Error

Table 9. Regression Statistics

N I Multiple R I Squared multiple R I Standard error of estimate
35 I ,848 .719 2.08

We evaluated the predictive ability of the regression models
by performing a crossvalidation. We performed a specific type of
crossvalidation, excluding one observation at a time and examining the
prediction made with the remaining observations. For our set of 35
observations, 35 different predictions were made for each regression
model. Tables 10 and 11 summarize the crossvalidation results for the
two linear regression models through the origin, which are specified in
Tables 4 - 9. For each of these models, Tables 10 and 11 show statis-
tics for:

Predicted squared residuals. For each observation, a regression
model is formed that excludes that observation. The resulting
model then uses the value of the excluded observation to predict
the number of faults inserted. This prediction is then subtracted
from the number of faults actually observed for the excluded ob-
servation. This residual is then squared, thereby forming the pre-
dicted squared residual.

Ratio of predicted number of faults to observed number of faults,
where predictions are made for excluded observations. For each
excluded observation, a prediction is made as described above.
The ratio of the prediction made using each excluded observation
to the actual number of faults is then formed.

Table 10. Predicted Squared Residuals for Linear Regressions

I Model I Mean I Vari- I Mini I Maxi- I 25‘“ I 50”’ I 75“‘ I
ance %tile %tile %tile mum mum

dJ.J ‘=b,v’’’ 3.840 1.000 0.752 51.02 0.003 124.91 5.43

dl.J*t=blv’~’ 3.876 1.479 0.799 36.27 0.03 69.66 4.68

+b2A’”

Table 1 1. Ratio of Predicted Faults to Observed Faults for Lin-
ear Regressions

Model

d””’ = 61 V’

75”’ 50‘” 25‘” Maxi Mini Vari- Mean
ance %tile %tile %tile mum mnm

0.899 1.136 0.508 8.64E-2 5.03 0.00 1.334

d”J“=blv’.’ 1.447 0.463 6.69E-2 4.03 0.00 1.164 0.911

+b2Ai’

Figure 1 - Histograms of Predicted Squared Residuals for Excluded
Observations

Predicted Squared Residuals

Figures 1 and 2 are histograms that present additional informa-
tion to that given in Tables 10 and l l. Looking at Table 10, we see that
the regression model that includes both code delta and code churn has
the lowest values for mean predicted squared residual and variance of
the predicted squared residual. Ths is also shown in Figure 1. In ad-
dition, Table 10 shows that the two parameter model that includes both
code churn and code delta has a slightly smaller difference between the
points at the 25th and 75th percentiles.

Figure 2 - Histograms of Ratio of Predicted to Observed Number of
Faults for Excluded Observations

Code Chlm

Code Delta
and Code
Chum

0.0 0.5 1.0 1 .5 2.0 2 . 5 3.0 3 . 5 4.0 4.5

Ratio o f Predicted to Observed Number of Faults

Table 1 1 shows that the mean value of the predictions made by the
model which includes both code delta and code churn comes closer to
predicting the number of faults observed. Table 11 also shows that the
model which includes only code churn and code delta has the lowest
variance for this ratio of predicted to actual values. This can be seen in
Figure 2, which shows that the regressions depending only code churn
has a higher variability for this ratio than the regression which includes
both code delta and code churn. However, the range between the
points at the 25th and 75'h percentiles is the highest for the two parame-
ter model.

Table 12 shows the results of the Wilcoxon Signed Ranks test, as
applied to the predictions for the excluded observations and the number
of faults observed for each of the regression models. We see that about
2/3 of the estimates tend to be less than the number of faults observed.

We can also plot the predicted residuals against the actual number of
observed faults for each of the four linear regression models. These
plots are shown in Figures 3 and 4.

Table 12. Wilcoxon Signed Ranks Test for Linear Regressions Through
the Origin

Statistic
Ranks Signifi-

Observed

Ties Churn Only
+ Ranks Faults;
- Ranks

Total
Observed - Ranks
Faults; + Ranks
Churn and Ties
Delta Total

a. Observed Faults > Regression model predictions
b. Observed Faults < Regression model predictions
c. Observed Faults = Regression model predictions
d. Based on positive ranks

-

cance
(2-tailed)

25" 17.52

35
0'

224.00 20.36 1 I b
.I36 -1.491" 406.00 16.92 24"

35
OC

192.00 19.20 lob
.044 -2.015" 438.00

Figure 3 - Predicted Residuals vs. Number of Observed Faults for Lin-
ear Regression with Churn

Faults = b l * C h u r n

Number o f observed faults - versions 2.0, 2 . l a , and 2 . l b

The results of the Wilcoxon signed ranks tests, as well as Figures 3
and 4, indicate that the predictive accuracy of the regression models
might be improved if syntactic analyzers capable of measuring addi-
tional aspects of a software system's structure were available.

Figure 4 - Predicted Residuals vs. Number of Observed Faults for Lin-
ear Regression with Chum and Delta

Faults = bl*Churn + b2*Delta
0

6
...
2 4
cl
& 2
a
+
. I ? 0
U
u
k -2

-4

-6

Number of observed faults - vers~ons 2.0. 2 . la , and 2 . l b

Finally, we investigated whether the linear regression model which
uses code churn alone is an adequate predictor at a particular signifi-
cance level when compared to the model using both code churn and
code delta. We used the R2-adequate test [8, 161 to examine the linear
regression models through the origin and determine whether the model
that depends only on code churn is an adequate predictor. A subset of
predictor variables is said to be R2-adequate at significance level a if:

R:,,, > 1 - (1 - R;,,K~ + d n , J , where
0 R2sub is the R2 value for the subset of predictors
0 R2hn is the R2 value for the full set of predictors

dn,k = (kFk,n-k-l)/n-k- 1, where
k = number of predictor variables in the model
n = number of observations
F = F statistic for significance a for n,k degrees of freedom.

Table 13 shows values of R2, k, degrees of freedom, Fk,n.k.l, dn,k, and
R2sub for both linear models through the origin. The number of obser-
vations, n, is 35, and we specify a=.05.

Table 13. Values of R2, DOF, k, Fk,n-k-l, and dn,k for R2-adequate Test

Linear Regressions
significance a significance a Through Origin
Threshold for d(n,k) Fk,"-k-l for k DF RL

Churn only
0.661 0.206 3.295 2 33 0.719 Chum, Delta

0.125 4.139 I 34 0.649 ""_

Table 13 shows that the value of Multiple Squared R for the
regression using only code churn is 0.649. The 5% significance thresh-
old for the code chum and code delta model is 0.661. This means that
the regression model using only code churn is not R2 adequate when
compared to the model using both code churn and code delta. Al-
though the amount of change occurring between subsequent revisions
appears to be the primary factor determining the number of faults in-
serted; the direction of that change also appears to be a significant fac-
tor.

8 Testing Objectives

Deterministically testing a large software system is virtually
impossible. Trivial systems, on the order of 20 or 30 modules, often
have far too many possible execution paths for complete deterministic
testing. This being the case, we must revisit what we hope to accom-
plish by testing the system. Is our goal to remove all of the faults
within the code? If this is our goal, how do we know when we have
them all? What is it worth, in terms of expense, to try to find one more
fault? Given unlimited time and resources, identification and removal
of all faults might be a noble goal, but real world constraints make this
largely unattainable. The problem is that we must provide an adequate
level of reliability in light of the fact that we cannot find and remove all
of the faults. Through the use of software measurement, we hope to
identify which modules contain the most faults and, based on execution
profiles of the system, how these potential faults can impact software
reliability. The idea is that a fault that never executes, never causes a
failure. However, a fault that lies along the path of normal execution
will cause frequent failures. The majority of the testing effort should
be spent finding those faults that are most likely to cause failure.

The first step towards this testing paradigm is the identification
of those modules that are likely to contain the most faults. The objec-

tives of the software test process are not clearly specified and some-
times not clearly understood. An implicit objective of a deterministic
approach to testing is to design a systematic and deterministic test pro-
cedure that will guarantee sufficient test exposure for the random faults
distributed throughout a program. By insuring, for example, that all
possible paths have been executed, then any potential faults on these
paths will have had the opportunity to have been expressed.

We must, however, come to accept the fact that some faults
will always be present in the code. We will not be able to eliminate
them all. The objective of the testing process should be to find those
faults that will have the greatest impact on the safety/survivability of
the code. Under this view of the software testing process, the act of
testing may be thought of as conducting an experiment on the behavior
of the code under typical execution conditions. We will determine, a
priori, exactly what we wish to learn about the code in the test process
and conduct the experiment until this stopping condition has been
reached.

To know the loci of probable faults in a complex software system
is not a sufficient condition for reliability modeling. A software system
may be viewed as a set of program modules that are executing a set of
mutually exclusive functions. If the system executes a fimctionality
expressed by a subset of modules that are fault free, it will never fail.
If, on the other hand, the system is executing a functionality expressed
in a subset of fault laden modules, there is a very high probability that it
will fail. Thus, failure probability is dependent upon the input data sets
which drive the system into regions of code (i.e., functionalities) of dif-
fering complexities (i.e., fault proneness).

Each software test suite implements a subset of functionalities.
As each test is run to completion it generates a test execution profile
which represents the results of the execution of one or more functions.
When a program begins the execution of a particular functionality we
can describe this beginning as the start of a stochastic process. For the
system, S, there is a call tree that shows the transition of program con-
trol from one program module to another. This transition can be mod-
eled as a stochastic process, where we define an indexed collection of
random variables { X ,] , where the index t runs through a set of non-
negative integers, t = 0,1,2,... representing the epochs of the process.
At any particular epoch the software is found to be executing exactly

one of its M modules. The fact of the execution occurring in a particu-
lar module is a state of the system. For a given software system, it may
be found in exactly one of a finite number of mutually exclusive and
exhaustive states, 1,2,...M . In this representation of the system, there
is a stochastic process { X , } , where the random variables are observed
at epochs t = 0,1,2,.-. and where each random variable may take on any
one of the M integers, from the state space A = 1,2,..-M .

The probability that a particular module may execute is a condi-
tional probability. Let Y be a random variable defined on the indices of
the set of elements of F. Then p!k’ = Pr[X, = iI Y = k] where
k = 42,. . . ,#{F} represents the execution profile for a set of modules
expressing function k exclusively. The distribution of the execution
profile is multinomial for a software system consisting of more than
two modules. In other words, for each functionality, J ; , there is an
execution profile represented by the probabilities p,“’ , pf’ , p y) , , p , . (0

10 Test Efficiency

The test process for evolving software systems takes on a dif-
ferent measurement aspect than that of new systems. Existing systems
are continually being modified as a normal part of the software mainte-
nance activity. Changes will be introduced into this system based on
the need for corrections, adaptations to changing requirements, and en-
hancements to make the system perform fastedbetter. The precise ef-
fects of changes to software modules in terms of number of latent faults
is now reasonably well understood. From a statistical testing perspec-
tive, test effort should be focused on those modules that are most likely
to contain faults. Each program module that has been modified, then,
should be tested in proportion to the number of anticipated faults that
might have been introduced into it.

Each program module is usually closely linked to a specific
functionality. That is, as we exercise a particular functionality a dis-
tinct execution profile emerges for that functionality. For each func-
tionality, some modules have a high probability of being executed,
while others have a low probability. Each test suite will express one or
more of these functionalities. The execution profiles generated from

each test may be characterized by the probability distribution
P = (p i 11 I i I n) for the kth test.

In the face of the evolving nature of the software system, the
impact of a single test may change from one build to the next. Each
program module has a relative complexity value. This relative com-
plexity is a fault surrogate. That is, the larger value of the relative
complexity the greater fault potential that a module has. If a given
module has a large fault potential, but limited exposure (small profile
value) then thefunctional cornpiexi@ of that module is also small. Our
objective during the test phase is to maximize our exposure to the faults
in the system. Another way to say this is that we wish to maximize
functional complexity, I$, given by

j=l

where pi is the relative complexity of the j t h module on the i th system

build and p:k' is the test profile of the kth test suite.
The initial phase of the efficient testing of changed code is to

identify the functionalities that will exercise the modules that have
changed. Each of these functionalities so designated will have an asso-
ciated test suite designed to exercise that fbnctionality. With this in-
formation it is now possible to describe the efficiency of a test from a
mathematical/statistical perspective. A regression test is one specifi-
cally tailored to exercise the functionalities that will cause the changed
modules to be executed. A regression test will be efficient if it does a
good job of exercising changed code. It is worth noting, however, that
a regression test that is efficient on one build may be inefficient on a
subsequent build. The efficiency of a regression test, then, is given
the following formula.

a=l

where m represents the cardinality of { M , u M i } as defined earlier.

by

In
this case, z , is simply the expected value for code churn under the pro-
file p c k) .

This concept of test efficiency permits the numerical evaluation
of a test on the actual changes that have been made to the software

system. It is simply the expected value of the fault exposure from one
release to another under a particular test. If the value of z is large for a
given test then the test will have exercised the changed modules. If the
set of z ' s for a given release is low then it is reasonable to suppose
that the changed modules have not been tested in proportion to the
number of probable faults that were introduced during the maintenance
changes.

For practical purposes, we need to know something about the
upper bound on test efficiency. That is, if we were to execute the best
possible test, what then would be the value of test efficiency. A best
regression test is one that will spend the majority of its time in the
modules that have changed the most from one build to the next. Let,

This is the total code churn between the i and j builds. To exercise
each module in proportion to the change that has occurred in the mod-
ule during its current revision, we will compute this proportion as fol-
lows:

4 , = x , / x *
This computation will yield a new hypothetical profile called the best
profile. That is, if all modules were executed in proportion to the
amount of change that they had received we would then theoretically
have maximized our exposure to software faults that may have been
introduced.

Finally, we seek to develop a measure that will relate well to
the difference between the actual profile that is generated by a test and
the best profile. To this end, consider the following term, / p i - qil .
This is the absolute value between the best profile and the actual pro-
file. This value has a maximum value of 1 and a minimum of 0. The
minimum value will be achieved when the module best and actual cov-
erage are identical. A measure of the total coverage for a set of mod-
ules (task or program) is then,

G I

This coverage value has a maximum value of 10 when the best and the
actual profiles are identical and 0 when there is a complete mismatch of
profiles.

11 Regression Test Results

The following discussion documents the results of the execution
of 36 instrumented tasks on two sequential builds of a large embedded
software system. The perspective of this discussion is strictly from the
standpoint of regression testing. That is, certain program modules have
changed across the two sequential builds. The degree of this change is
measured by code churn. As has been clearly demonstrated on the Cas-
sini spacecraft project, the greater the change in a program module, the
greater the likelihood that faults will have been introduced into the code
by the change. Each of the regression tests, then, should attempt to ex-
ercise these changed modules in proportion to the degree of change. If
a changed module were to receive little or no activity during the test
process, then we must assume that the latent faults in the module will
be expressed when the software is placed into service.

All of the tasks in system were instrumented with our Clic 1.0
tool. This tool would permit us to count the frequency of execution of
each module in each of the instrumented tasks and thus obtain the exe-
cution profiles for these tasks for each of the tests. The execution pro-
files show the distribution of activity in each module of the instru-
mented tasks. For each of the modules, the code churn measure was
computed. The code churn values for each modules reflected the de-
gree of change of the modules during the most recent sequence of
builds. The cumulative churn values for all tasks are shown in the sec-
ond column of Table 14.

A churn value of zero indicates that the module in question re-
ceived no changes during the last build sequence. A large churn value
(>30) indicates that the module in question received substantial
changes.

For the subsequent analysis, two profile values for each test will
be compared. The actualprofile is the actual execution profile for each
test. The best profile is the best hypothetical execution profile given
that each module would be tested directly in proportion to its chum
value. That is, a module whose churn value was zero would receive
little or no activity during the regression test process.

Table 14. Test Summary by Task

From Table 14 we can seen that the A and B tasks have received
the greatest change activity. Associated with each task entry in this
table is the Best Profile and the Actual Profile for the task across all
tests. The last row in the table gives the total values for code churn for
all tasks. The last two columns of this table contain the expected value
for the code churn of the task under the best profile and also under the
actual profile. These columns are labeled Best Coverage and Actual
Coverage. The total expected value for code churn under the best pro-
file is 13 1 1. The total expected value for code churn under the actual

profile is 89. The tests spent a disproportionate amount of time in
modules that had not changed during this build interval. The ratio of
Total Actual Coverage to Total Best Coverage will yield a percent cov-
erage index for the task, for the system, or for the test depending on the
granularity of the summary.

The change coverage index was computed by module for each
task and then for the total system. In Figure 5 , these coverage data are
presented for the total system and Tasks A, B, D, and E. For this fig-
ure, the values have been scaled onto the interval from 0 to 10. Had
there been perfect best coverage, the total value would have been 10.
The coverage values for the A and B tasks were the best out of all
tasks. The E and D tasks, while having relatively high code churn Val-
ues, did not fare so well. The test coverage of the D task was typical of
the total system, shown as the rightmost entry in this figure.

Figure 5 - Change Coverage Index

2

1 .a
1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

j

i

A B E D Total

We would now like to look within a task to see why the A and B
tasks showed better coverage than other tasks. The difference between
the best profile and the actual profile is shown in Figure 6. Here, if the
line is negative, this means that the module in question was exercised
well out of proportion to the possible faults that it contained. On the
other hand if the line is positive, then the module in question was not

exercised in proportion to the faults that it might contain. A perfect
line on this chart would be perfectly straight at zero on the profile axis.

A similar graph is shown in Figure 7 for Task B. Here we can
see that almost all test activity was on three distinct program modules
(the negative values). The code that was changed was not exercised by
this test to any large extent.

Figure 6 - Difference Between Best and Actual Profile for Task A

Ti'

Table 15 summarizes the performance of the best 24 of suite of
115 instrumented tests. Only those tests whose performance index ex-
ceeded 10% of a theoretical total are shown here. Again the perform-
ance index shown in this figure was computed by forming the ratio of
the actual profile to the best profile for that test. It must be remem-
bered that not all tests will exercise all modules. The performance in-
dex is computed only for those modules whose functionality was in-
cluded in the test. From a regression test perspective, we now know
that we have a testing problem. None of these tests do a really good
job in executing the code most likely to contain the newly introduced
faults.

Figure 7 - Difference Between Best and Actual Profile for Task B

0 2 I

-0 1 i

12 Summary

There is a distinct and a strong relationship between software
faults and measurable software attributes. This is in itself not a new
result or observation. The most interesting result of this current en-
deavor is that we also found a strong association between the fault in-
sertion process over the evolutionary history of a software system and
the degree of change that is taking place in each of the program mod-
ules. We also found that the direction of the change had an effect on
the number of faults inserted. Some changes will have the potential of
introducing very few faults while others may have a serious impact on
the number of latent faults. Different numbers of faults may be in-
serted, depending upon whether code is being added to or removed
from the system.

In order for the measurement process to be meaningful, the
fault data must be very carefully collected. In this study, the data were
extracted ex post facto as a very labor intensive effort. Since fault data
cannot be collected with the same degree of automation as much of the
data on software metrics being gathered by development organizations,
material changes in the software development and software mainte-
nance processes must be made to capture these fault data. Among other

things, a well defined fault standard and fault taxonomy must be devel-
oped and maintained as part of the software development process.
Further, all designers and coders should be thoroughly trained in its
use. A viable standard is one that may be used to classify any fault un-
ambiguously. A viable fault recording process is one in which any one
person will classify a fault exactly the same as any other person.

Table 15. Individual Test Summaries

Test # Percent
Coverage

28 20.6
18

18.2 14
19.0

12.2 158
12.2 9
12.9 39
13.1 20
13.2 156
14.7 169
14.8 49
14.8 47
16.9 12

Test # Percent
Coverage

177 11.7
31

10.2 137
10.6 33
10.7 180
10.8 38
10.9 1
11.3 159
11.3 2
11.4 59a
11.5 167
11.5 3
11.6

Finally, the whole notion of measuring the fault insertion pro-
cess is its ultimate value as a measure of software process. The soft-
ware engineering literature is replete with examples of how sofiware
process improvement can be achieved through the use of some new
software development technique. What is almost absent from the same
literature is a controlled study to validate the fact that the new process
is meaningful. The techniques developed in this study can be imple-
mented in a development organization to provide a consistent method
of measuring fault content and structural evolution across multiple
projects over time. The initial estimates of fault insertion rates can
serve as a baseline against which future projects can be compared to
determine whether progress is being made in reducing the fault inser-
tion rate, and to identi@ those development techniques that seem to
provide the greatest reduction.

Software test is not an intuitive process. Different modules are
changed between builds. A regression test that was satisfactory for one
build might well be totally inadequate on a subsequent build. When a
program is subjected to numerous test suites to exercise differing as-
pects of its functionality, the test risk of a system will vary greatly as a
result of the execution of these different test suites. Intuitively - and
empirically - a program that spends a high proportion of its time exe-
cuting a module set of high relative complexity will be more failure
prone than one driven to executing program modules with low com-
plexity values. Thus, we need to identify the characteristics of test sce-
narios that cause our criterion measures of x andz to be large.

The importance of this research is that we can now have a clearer
understanding of how to quantify and evaluate the effectiveness of the
regression testing process. For this study, we were not able to perform
an analysis of test effectiveness on the same system for which we esti-
mated the rate of fault insertion. We are currently working with NASA
and commercial software development efforts to apply both types of
analysis to the same project, with the goal of improving our ability to
estimate the number of faults remaining in the system after the comple-
tion of a test sequence and allocate them among those portions of the
system that have changed since the last increment.

Acknowledgements

The research described in this paper was carried out at the University of
Idaho and the Jet Propulsion Laboratory, California Institute of Tech-
nology. The work at the University of Idaho was partially supported by
a grant from the National Science Foundation. Portions of the work
perfonned at JPL were sponsored by the U. S. Air Force Operational
Test and Evaluation Center (AFOTEC) and the National Aeronautics
and Space Administration’s IV&V Facility.

Bibliography

[l] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B.
Ray, M.-Y. Wong, “Orthogonal Defect Classification - A

Concept for In-Process Measurement,” IEEE Transactions on
Software Engineering, November, 1992, pp. 943-946.

[2] M. H. Halstead, Elements of Software Science. Elsevier, New
York, 1977.

[3] “IEEE Standard Glossary of Software Engineering Terminology,”
IEEE Std 729-1983, Institute of Electrical and Electronics
Engineers, 1983.

[4] “IEEE Standard Dictionary of Measures to Produce Reliable
Software,” IEEE Std 982.1-1988, Institute of Electrical and
Electronics Engineers, 1989.

[5] “IEEE Standard Classification for Software Anomalies”, IEEE Std
1044- 1993, Institute of Electrical and Electronics Engineers,
1994

[6] T. M. Khoshgoftaar and J. C. Munson , “Predicting Software
Development Errors Using Complexity Metrics,” IEEE Journal
on Selected Areas in Communications 8, 1990, pp. 253-261.

[7] T. M. Khoshgoftaar and J. C. Munson “A Measure of Software
System Complexity and Its Relationship to Faults,” In Pro-
ceedings of the 1992 International Simulation Technology
Conference, The Society for Computer Simulation, San Diego,
CA, 1992, pp. 267-272.

[8] S. G. MacDonell, M. J. Shepperd, P. J. Sallis, “Metrics for Database
Systems: An Empirical Study,” Proceedings of the Fourth In-
ternational Software Metrics Symposium, November 5-7, 1997,
Albuquerque, NM, pp. 99- 107

[9] J. C. Munson and T. M. Khoshgoftaar “Regression Modeling of
Software Quality: An Empirical Investigation,” Journal of In-
formation and Software Technology, 32, 1990, pp. 105-1 14.

[lo] J. C. Munson and T. M. Khoshgoftaar “The Relative Software
Complexity Metric: A Validation Study,” In Proceedings of the
Software Engineering 1990 Conference, Cambridge University
Press, Cambridge, UK, 1990, pp. 89-102.

[111 J. C. Munson and T. M. Khoshgoftaar “The Detection of Fault-
Prone Programs,” IEEE Transactions on Software Engineering,
SE-18, NO. 5 , 1992, pp. 423-433.

[12] J. C. Munson, “Software Measurement: Problems and Practice,”
Annals of Sojiiare Engineering, J. C. Baltzer AG, Amsterdam
1995.

[13] J. C. Munson, “Software Faults, Software Failures, and Software
Reliability Modeling,” Information and Software Technology,
December, 1996.

[141 J. C. Munson and D. S. Werries, “Measuring Software Evolution,”
Proceedings of the I996 IEEE International Software Metrics
Symposium , IEEE Computer Society Press, pp. 41-5 1.

[151 J. C. Munson and G. A. Hall, “Estimating Test Effectiveness with
Dynamic Complexity Measurement,” Empirical So f iare En-
gineering Journal. Feb. 1997.

[161 J. Neter, W. Wasserman, M. H. Kutner, Applied Linear Regression
Models, Irwin: Homewood, IL, 1983

[17] A. P. Nikora, N. F. Schneidewind, J. C. Munson, “IV&V Issues in
Achieving High Reliability and Safety in Critical Control Sys-
tem Software,” proceedings of the International Society of Sci-
ence and Applied Technology conference, March 10-12, 1997,
Anaheim, CA, pp 25-30.

[181 A. P. Nikora, “Software System Defect Content Prediction From
Development Process And Product Characteristics,” Doctoral
Dissertation, Department of Computer Science, University of
Southern California, May, 1998.

A

[19] “User’s Guide for UX-Metric 4.0 for Ada,” SET Laboratories,
Molino, OR, 0 SET Laboratories, 1987-1993.

